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T h e  preparation and pyrolysis of 2-tert-butyl-5-ethylidene-1,3-dioxane-2-d are described. A negative isotope 
crossover experiment and a deuterium kinetic isotopic effect are in favor of a n  intramolecular isomerization in- 
volving a concerted 1,5-hydrogen shif t .  Some conclusions on the transit ion state are discussed. 

We have shown that unsaturated acetals undergo two 
types of thermal cleavage depending on the location of the 
double bond.* The acetals of type 1 derived from allylic 
alcohols cleave thermally to give allylic esters 3 and ole- 
fins 4. On the other hand, those acetals 2 derived from 
a,@-unsaturated aldehydes fragment to vinyl ethers 5 and 
saturated aldehydes 6. 

H 

1 

H' 

3 

2 

Both cleavages can be described as retro-ene reactions3a 
or retrograde ,2,2, + *2, cycloadditions in which a het- 
eroatom is involved. For acyclic acetals, the results of ki- 
netic studies in the gas-phase pyrolysis3b (first-order ki- 
netics with a negative activation entropy) unambiguously 
support a concerted [ 1,5] sigmatropic hydrogen migration. 
The structures of cleavage products are in agreement with 

such a mechanism. The experimental data available to 
date suggest that a six-membered transition state (such as 
7a or 7b) is involved in the thermolysis. 

7a, R = @alkyl; R'= H, a l k y l  
b, R = H; R' = 0-alkyl 

Insofar as acyclic acetals are concerned, there is no ste- 
ric restriction to such a transition state. In cyclic acetals, 
such as 5-alkylidene-1,3-dioxanes 8, the concerted [ 1,5] 
sigmatropy, as proposed above, imposes considerable 
strain on the less favored4 boat conformer 9. Dreiding 
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Thermal Isomerization of 5-Alkylidene-1,3-dioxanes 

Table I 
The Kinetic Isotopic Effect in the Pyrolysis of 18 

---Deuterium content, %- 
Starting Recovered 

Conditions of dioxane dioxane Ester kH/kl,b 
pyrolysisa 18, D, 18, D, 20 at 510' 

510, 45 sec, 50% 36.4 49 .4  28.5 2 . 3  
510, 45 sec, 45% 20.6  30.9 12 .4  3 . 9  

a Temperature ("C), contact time in seconds, total con- 
version of the labeled 18. 

models of this conformation show that the migrating hy- 
drogen atom is positioned 3 A away from the migrating 
terminus. Indeed, cyclic acetals 8 also undergo thermal 
cleavage reaction but require higher temperatures. 

In these cases, the cleavage reaction does not involve a 
fragmentation, but an isomerization of the acetals 8 to 
yield the corresponding acyclic esters 10. Therefore the 
pressure-increase technique we employed for acyclic ace- 
tals to follow the kinetics was not adequate.3b 

These problems prompted us to undertake some experi- 
ments related more specifically with the hydrogen transfer 
itself, using both a 2-proteo- and a 2-deuterio-5-alkylidene- 
dioxane 8. 

Synthesis of 2-tert-Butyl-5-ethylidenedioxane-2-d. 
The general procedure for the synthesis of 5-alkylidene- 
dioxanes has been described by us p rev i~us ly .~  In the 
present case, the key intermediate was pivalaldehyde-I-d 
(15), which was prepared by a sequence of deuterium in- 
corporation steps as shown in Scheme I;  the processes and 
the conditions were those of Seebach for the synthesis of 
benzaldehyde-1 -d.8 Condensation of 15 with diol 16 gave 
acetal 17, which was pyrolyzed a t  such a temperature that 
the retro-Diels-Alder reaction of 17 took place without 
causing the rearrangement of dioxane 18. The deuterium 
incorporation as measured by means of a nmr integration 
was 72% both in aldehyde 15 and dioxane 18. 

See Experimental Section. 

Scheme I 

11 12 13 

15 14 
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Rearrangement of 5-Alkylidenedioxanes. First of all, 
our aim was to  prove the intramolecular [1,5] shift of the 
hydrogen atom a t  the C-2 position in the isomerization of 
8 to 10. For this purpose, we have chosen to examine the 
possibility of an isotope crossover in the thermolysis of a 
1:l mixture of deuterated dioxane 18 and an undeuterated 
analog, 2-ethyl-5-ethylidene-1,3-dioxane (19). The choice 
of dioxanes 18 and 19 is dictated by the requirement that 
the rates of isomerization of both compounds are compa- 
rable so that such an experiment is meaningful and valid. 
In Scheme 11, conditions of the pyrolysis and results are 
summarized, from which a number of conclusions can be 
obtained. 
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Scheme I1 
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a Deuterium incorporation in parentheses. b Conversion of the 
dioxanes: 7 5  f 5%. 

(1) The undeuterated dioxane 19 isomerizes exclusively 
to (2-methy1ene)butylpropionic acid ester (23) in which no 
deuterium is incorporated as shown by the nmr spectrum; 
in other words, compound 22 has not been found in the 
reaction mixtures. 

(2) The deuterium in the products is found exclusively 
in the pivalate 20 and is specifically located a t  the C-3 
position in the alkyl chain. Together with the above fact, 
the results indicate that each dioxane has undergone an 
intramolecular [1,5] hydrogen migration. 

(3) The recovered dioxane 18 shows an nmr pattern for 
the ethylidene group identical with that of the starting 
material; no dioxane 21 has been detected in the reaction 
mixture. This fact suggests that the rearrangement is irre- 
versible. This conclusion is to be expected since the 
AAH"2ss (dioxane 18-ester 20) is calculated9 to be -16 
kcal/mol in favor of the ester, which, furthermore, pos- 
sesses a higher entropy factor a t  550". 

(4) The deuterium content of ester 20 amounts to only 
51% while the percentage of deuterium in the recovered 
dioxane 18 rises to 94%. This enrichment reveals a signifi- 
cant first-order deuterium isotopic effect which is in 
agreement with the conclusion obtained so far. 

Deuterium Kinetic Isotopic Effect. In order to esti- 
mate the deuterium kinetic isotopic effect in the rear- 
rangement, dioxane 18 with lower deuterium contents was 
pyrolyzed alone in the gas phase. From the experimental 
results, the deuterium kinetic isotopic effects k H / k D  were 
calculated; they are summarized in Table I. The scatter 
in these values arises mainly from uncertainty in the con- 
version of the ratio of 18. The observed value of 3 k 1 a t  
510" for kH/kD is in the range reported for other [1,5] hy- 
drogen migrations having a highly symmetrical transition 
state,10q11,12 although the large uncertainty precludes defi- 
nite conclusions about the geometry of the transition state 
for the pyrolysis of 18. 

Conclusion 
In summary, our observations on the thermal rearrange- 

ment of dioxanes of type 8 have shown that the reaction is 
intramolecular (lack of crossover), that it involves a spe- 
cific [1,5] hydrogen shift with double-bond m i g r a t i ~ n , ~ , ~  and 
that the hydrogen shift occurs in the slow reaction step. 

These experimental data are characteristic for a con- 
certed [1,5] sigmatropic reaction. Recent mechanistic pro- 
posals for the retro-ene reaction13 have underlined the lin- 
ear (coaxial) relationship of the hydrogen and the atoms 
between which it is transferred in the transition state. For 
5-alkylidene-1,3-dioxanes, a bicyclic transition state 24, 
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arising from a boat conformation 9, would be required.  
Such a s t ructure  is  highly s t ra ined,  bu t ,  in view of t he  
large activation barrier involved in t h e  reaction, the ge- 
ometry of 24 m a y  be at ta inable .  

9 24 

Experimental Section 
The fractional distillation and the preparative glc techniques 

used are the same as earlier.2 The infrared spectra were taken as 
liquid films. Nmr spectra were taken at  60 M H z  in carbon tetra- 
chloride with TMS as internal standard. 
%-tert-Butyl-l,3-dithiane (12). The compound was prepared 

according to Seebach's general procedure.8 Starting from 162 g 
(1.5 mol) of 1,3-propanedithiol and 129 g (1.5 mol) of pivalal- 
dehyde there was obtained 167 g (6470) of distilled dithiane 12: bp 
115" (14 mm); n 4 0 ~  1.5305. The colorless liquid crystallized on 
standing: mp 37.5'; ir 2980, 2910, 1500, 1350, and 900 cm-1; nmr 1 
H singlet at  6 8.08, 9 H singlet at  6 2.27. 
2-tert-Butyl-l,3-dithiane-2-d (14). was prepared according to 

Seebach's general procedure.8 Starting from 156 g (0.89 mol) of 
12, 144 g (92%) of 14 was obtained, ir new bands at  1015, 1030, 
and 742 cm-l.  The nmr integration of the singlet at  6 8.08, when 
compared to the other signals, shows an isotopic mixture contain- 
ing 72% of 2-tert-butyl-1,3-dithiane-2-d (14). 

Pivalaldehyde-1-d (15). In a three-necked reaction vessel 
(thermometer, stirrer, and condenser), 144 g (0.82 mol) of di- 
thiane 14, 150 ml of water, 1200 ml of dioxane, 445 g of mercuric 
chloride, and 161 g of mercuric oxide8 were heated to gentle boil- 
ing under nitrogen. The orange slurry turned white and the solu- 
tion became green. After 4 hr the condenser was replaced by a 
distillation column. The distilling pivalaldehyde 15 was collected 
in a trap cooled to -5". The collected mixture (76 g) contained 
the aldehyde and small amounts of water and dioxane. The dis- 
tillate was washed twice with water and dried over calcium chlo- 
ride to give aldehyde 15 (64 g), which still contained a trace of 
dioxane. The overall yield calculated from starting pivalaldehyde 
was 49.5%. The ir spectrum of 15 was similar to that of undeuter- 
ated aldehyde with additional bands at  2140, 2100, 1255, 1120, 
1060, and 855 cm-1. In the nmr spectrum, the integration of pro- 
ton H-1 a t  6 9.4 was compared to that of the tert-butyl protons at  
6 1.17 and showed an isotopic content of 70-75% of pivalaldehyde- 

2-tert-Butyl-5-ethylidene-1,3-dioxane-2-d (18). The acetal for- 
mation and the procedure of retrodienic pyrolysis have been de- 
scribed p rev i~us ly .~  The nmr spectra of the undeuterated species 
18 have also been d e ~ c r i b e d . ~  Integrations of the signals between 6 
3.75 and 4.18 (3 protons OCHz plus H-2 protons) and the signal of 
the singlet a t  6 0.92 (9 tert-butyl protons) showed that the isotopic 
mixture 18 contains 7270 of dioxane-2-d. 

Thermal Isomerization of Dioxane 18. The pyrolysis tech- 
nique, the synthesis, and data of compounds 19 and 23 have been 
described elsewhere.2 The isotopic mixtures 18 with different deu- 
terium contents were obtained by mixing the deuterated 18 (deu- 
terium content 72%) with undeuterated 18. The conversions were 
calculated after calibration of the glc chromatograms with pure 
samples of dioxanes and esters on two different columns (SE-30 
and Reoplex on Chromosorb W-HMDS). The isotopic effect has 
been calculated as follows. 

Let asH, a,H and a,D, a,D be the concentrations of the start- 

1-d (15). 

ing and recovered proteo and deuterio dioxanes, respectively. The 
measured total conversion X relates these quantities as follows. 

a,H + a,D E (1 - X)(a,H + aSD) 

_ -  h~ log(arH/asH) 
h~ log( a,.D / a,D) 

The measured deuterium contents DE and D, (Table I) are re- 
lated to the ratio of the starting and recovered deuterio and pro- 
teo dioxanes in the following way. 

(1) 

(2) 

The kinetic isotope effect is given by eq 2.14 

- 

a,D , 
I S  - -=  D, 

100-D, aSH (3) 

(4) 

By replacing the parameters in eq 1 with their equivalent 
values in eq 3 and 4, the following relations are obtained. 

( 5 )  

Thus k H / k D  in eq 2 can be computed from the experimental 
data X ,  DE, and D,. 

2-Methylenebutyl-3-dl-pivalic Acid Ester (20). The ir was 
similar to that of the undeuterated butyl ester with additional 
bands at  2300, 2100, 1015, and 815 cm-l.  The deuterium amount 
is calculated by nmr; the integration of the CH2 quartet of the 
butyl group a t  6 2.1 is compared to that of the OCHz at 6 4.48 or 
the methylene at  6 4.92. 
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